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Abstract 

A simple algorithm for solving the hollow-fiber bioreactor design equations has been presented. This algorithm is quite general and is 
applicable to any nonlinear reaction occurring in the reactor spongy matrix. This can also be applied to other reactor types having similar 
configurations, like the wall-coated enzyme reactors. 
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1. Introduction 

Many models are available for the theoretical description 
of hollow-fiber membrane bioreactors [ l-31. Waterland et 
al. [ 11 have solved both linear and nonlinear reaction cases 
in membrane reactors whereas Kim and Cooney [2] and 
Jayaraman [ 31 have obtained compact solutions to the first- 
order reaction problem in membrane reactors. Davis and Wat- 
son [4] describe special finite difference formulations to 
solve the annular bed catalytic reactor problems. They note 
that the major error lies in the discretization of the lumen side 
equations. Salmon and Robertson [ 51 have assumed the flux 
of the reactants into the annulus to be piecewise constant and 
have solved the design equations. In this communication an 
alternative algorithm developed by the authors to solve the 
annular reactor problems, is described. This algorithm is com- 
putationally simpler and is semi-analytical in nature. 

2. Theoretical development 

A conventional hollow-fiber bioreactor is considered in 
this analysis. The reactant which is fed through the inner tube 
(known as the lumen) passes through the membrane to the 
outer annular region (known as the spongy matrix) where 
the reaction occurs with the cells/enzymes localized therein. 
The membrane is permeable to the reactants and products but 
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is impermeable to the high molecular weight enzymes/cells. 
The product diffuses back through the membrane to the lumen 
and flows with the bulk stream. The following assumptions 
are considered to hold good for the subsequent development 
of the governing equations: 
1. the reactor geometry is cylindrical; 
2. the reactant flow in the lumen is laminar and parabolic; 
3. there is no radial convection in the membrane and the 

spongy matrix; 
4. quasi-steady state prevails in the reactor; 
5. the membrane is inert and the reaction occurs only in the 

spongy matrix; 
6. the reaction is isothermal. 

With these assumptions and taking the simple Michaelis- 
Menten rate expression as a test case, the governing equations 
for the lumen, membrane and spongy matrix can be written 
as: 

Lumen 

Membrane 

Spongy matrix 

(1) 

(2) 

(3) 
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The associated boundary conditions are C,=l atZ=O 

c, =co at z=O 

ci, c2 and cj are the concentrations of the reactant in the lumen, 
membrane and spongy matrix respectively. a is the lumen 
radius, b is distance from the lumen center to the outer wall 
of the membrane and d is the distance from the lumen center 
to the outer wall of the spongy matrix. The other symbols are 
explained in the nomenclature (Appendix A). 

Following Kim and Cooney [2] and Jayaraman [ 31 the 
membrane equation can be integrated with the boundary con- 
ditions represented by Eqs. (6) and (7) to reduce the equa- 
tions from three to two. The membrane function would now 
appear in the form of the modified boundary conditions. 
Defining 

W (y=---.-. 
D,a 

(11) 

X= L for the lumen side 
a (12) 

X = 5 for the matrix side 

V Z=&; p,=“o;; +2=b2? 
1 D3Km 

The lumen and spongy matrix equations can be written in 
dimensionless form as: 

Lumen 

Spongy matrix 

The relevant boundary conditions are 

(15) 

(16) 

s=h(KC,-C,) atX=l 

We can deduce from Eqs. ( 19) and (20) the following: 

h(KC,-C,)= (22) 

Kim and Cooney [ 21 applied the Laplace Transformation 
approach and obtained the solution of Eqs. ( 15) and ( 16) in 
terms of hypergeometric series. Jayaraman [ 31 simplified the 
approach by solving the linear matrix equation and decou- 
pling the matrix equations from the set of equations. For 
nonlinear equations it is difficult to obtain closed form solu- 
tions Thus a different strategy is needed to decouple the 
spongy matrix equations. This can be done by obtaining the 
flux to the spongy matrix or the effectiveness factor at every 
axial location numerically. Defining effectiveness factor as 
the ratio of the observed rate to the hypothetical rate at the 
lumen wall conditions, we can obtain an expression for it as 

2?rhAzD,z 
r=b 

77(z) = 

c(~-b’)((~~~~,,)*~,._. 

(23) 

This can be written in dimensionless form as 

v(Z) = 
2(SC,)I(GX)(Km +C,) 

#Jyp*- 1)CiG-z X=1 

This can be combined with Eq. (19) to obtain 

(24) 

SC1 t7(Z)4*(P2- l)C,Km 
sx x=,= 2(Km +C,) =f(C,) (25) X=l 
where C, = C, ( 1) is the lumen wall concentration 

It can be seen from the above equation that if the effect- 
iveness factor is known, the solution of the problem isreduced 
to the solution of the lumen equation (Eq. ( 15)) subject to 
the boundary conditions represented by Eqs. ( 17), ( 18) and 
(25) which is nonlinear. The solution of such problems, in 
an analogous situation of mass transfer in reactive fibers, has 
been discussed by Rudisill and LeVan [ 61. Following Rud- 
isill and LeVan [ 63, the solution of the lumen equation can 
be written as: 

c, (X.0 = C,(Z) - (26) 
0 



C,(X,Z) is the solution of the lumen equation with the lumen 
wall boundary condition replaced by 

C,=OatX=l,Z>O (27) 

This can be recognized as the celebrated Graetz problem with 
an infinite wall Sherwood number [ 7,8]. The solution for the 
Graetz problem can be obtained in terms of hypergeometric 
series by separation of variables and is 

C,(X,Z-Z’) = CA,Y,(X) exp( -hi(Z-Z’)) 
n=I 

(28) 

where A,, Y, and A, are the Eigenconstants, Eigenfunctions 
and the corresponding Eigenvalues. The solution procedure 
is described by Brown [ 71 and Cooney et al. [ 8 1. The Eigen- 
values and Eigenconstants are tabulated by Brown [ 71. Dif- 
ferentiating Eq. (26)) the wall flux, EC, /SXI x-, , represented 
by Eq. (25) can be written as 

’ dC .(Z’> SC, -I ~,,,(X,Z-Z’)l,=,dz’=f(C,,~(Z)) 
dZ’ 

0 

(29) 

Eq. (29) is a Volterra integral equation with the lumen wall 
concentration as the dependent variable and the axial length 
as the independent variable. The above equation can be eval- 
uated by approximating the derivative by a difference for- 
mula. Thus Eq. (29) becomes 

z SC, _ 5 cw,;>q 

,= I 
,z’(X,Z-Z’) Ix= ,dZ’ 

0 

The integral of 6C,/6Z’ can be evaluated analytically 
the above equation becomes 

n’ cc,, - L, I) * c AZ ( c 4, exp( -A:-&,,) (exp( - AfZ,) 
I= I n= I 

-exP(A~j~,)))=f(C,(m),77(m>) 
where 

B, = -A,(dYnldX) Ix=, 
X 

Defining mixing cup concentration as 

I C(X,Z)( 1 -X’)XdX 

c=” , 

I (1 -X2)XdX 
0 

(30) 

Thus 

(31) 

(32) 

(33) 

This can be evaluated at the required axial position using the 
properties of the Graetz function as: 

A simple method of solving the membrane bioreactorprob- 
lem has been outlined. The first key to solving the problem 

C(m) = C,(m) - c ,;,(” ,>-~ ‘) 

(34) 

3. Results and discussion 

In order to obtain the solution, we have defined an effect- 
iveness factor based on the actual rate relative to the hypo- 
thetical rate at the lumen wall conditions. This enables us to 
decouple the spongy matrix equation from the set of equa- 
tions. The membrane and the spongy matrix functions now 
appear in the form of the modified boundary condition to the 
lumen equation at its wall. Eq. (25) represents this boundary 
condition and it can be seen that the spongy matrix function 
now appears in the form of the effectiveness factor. The 
algorithm to solve the decoupled problem can now be 
described as follows. 

4. 

1. 

2. 

3. 

4. 

5 

Algorithm 

Start at the reactor entrance. At this position the lumen 
wall concentration is unity. Use this value in the equation 
for the spongy matrix boundary condition (Eq. (22) ). 
Solve the spongy matrix equation (Eq. ( 16)) subject to 
the above boundary condition along with zero flux bound- 
ary condition (Eq. (21) ). This can be carried out by using 
a standard shooting routine. 
Evaluate the effectiveness factor at this position using Eq. 
(24). 
Use this value of the effectiveness factor for the lumen 
wall boundary condition (Eq. (25) ) to solve the lumen 
equation; i.e. solve the Volterra integral equation (Eq. 
(30) ) (by virtue of the finite difference approximation 
employed this reduces to solving a nonlinear algebraic 
equation) and obtain the value of the lumen wall concen- 
tration at the next incremental step in the axial direction. 
Repeat steps 2 to 4 until the reactor exit is reached. 

A simple Michaelis-Menten rate expression is considered 
as a test case. This expression was chosen because the results 
for this reaction occurring in a hollow-fibermembranereactor 
using a complete finite difference formulation of the uncoup- 
led equations are available [ 1 1. Results obtained by the pres- 
ent method are compared with the results from the finite 
difference formulation in Fig. 1. It can be seen from the figure 
that there is excellent agreement between the methods. It was 
observed that a step size of 0.005 in the axial direction is 
sufficient to give results with an accuracy to three digits. 

5. Conclusions 
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Fig. I. Mixing cup profiles in the reactor. 

is to define an effectiveness factor based on lumen wall con- 
ditions. The second key is to develop a Volterra integral 
equation in terms of the lumen wall concentration. This can 
be further simplified to a single nonlinear algebraic equation. 
By continuously switching between the spongy matrix prob- 
lem (to evaluate the effectiveness factor) and the lumen 
problem (to evaluate the lumen wall concentration), the 
entire concentration profile can be obtained. This method is 
quite straightforward and can be applied to any arbitrary 
nonlinear rate form. This method is computationally simple 
but rigorous, and has an attractive semi-analytical format. It 
can also be applied to similar reactor configurations such as 
the wall-coated enzyme reactor. 

Appendix A. Nomenclature 

CY Lumen radius 
A, Eigenconstants 
b Distance from lumen center to membrane outer 

wall 
C Concentration of the reactant 
CO Concentration at lumen inlet 
C Dimensionless concentration of the reactant 

d 
d 

D 
h 
K 

Kl 
Kb 
Km 

NSlt 
Pe 
r 

vo 
VW 
X 

Yll 
2 
z 
AZ 

Lumen side mixing cup concentration 
Distance from the lumen center to the spongy 
matrix wall 
Diffusion coefficient of the reactant 
Parameter defined by Eq. ( 10) 
Partition coefficient 
ValueofKatr=a 
ValueofKatr=b 
Michaelis-Menten constant 
Wall Sherwood number 
Peclet number defined by Eq. (14) 
Radial coordinate 
Centerline laminar flow velocity for lumen side 
Maximum reaction rate 
Dimensionless radial coordinate defined by Eqs. 
(12) and (13) 
Eigenfunctions 
Axial distance variable 
Dimensionless axial distance 
Step size in the axial direction 

A. 1. Greek symbols 

; 
Parameter defined by Eq. ( 11) 
dfb 

; 
Effectiveness factor 
Thiele modulus 

AZ Eigenvalues 

A.2. Subscripts 

1,2,3 Lumen, membrane and spongy matrix respectively 
W Wall 

References 

[l] L.R. Waterland, A.S. Michaels and CR. Robertson, AIChE J., 20 
(1974) 50. 

[2] S.S. Kim and D.O. Cooney. Chem. Eng. Sci.. 31 ( 1976) 261, 
[ 31 V.K. Jayaraman, Biorechnd. Prog., 8 (1992) 462. 
[4] M.E. Davis and L.T. Watson, Chem. Eng. J.. 33 (1986) 57. 
[5] P.M. Salmon and C.R. Robertson, Chem. Eng. J., 38 (1988) 57. 
[6] E.N. Rudisill and M.D. LeVan, Chem. Eng. Sci., 45 (1990) 2991. 
[ 71 G.M. Brown, AIChE J., 6 ( 1960) 179. 
[S] D.O. Cooney, S.S. Kim and E.J. Davis, Chem. Eng. Sci., 29 (1974) 

1731. 


